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We show by numerical simulations that a nonrotationally symmetric body, whose orientation is fixed and
whose center of mass can slide along a rectilinear guide, under the effect of inelastic collisions with a
surrounding gas of particles, displays directed motion. We present a theory which explains how the lack of time
reversal induced by the inelasticity of collisions can be exploited to generate a steady average drift. In the limit
of a heavy ratchet, we derive an effective Langevin equation whose parameters depend on the microscopic
properties of the system and obtain a fairly good quantitative agreement between the theoretical predictions and
simulations concerning effective friction, diffusivity, and average velocity.
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I. INTRODUCTION

The striking contrast between the simplicity of models or
experimental setups and the richness and complexity of the
observed phenomena has contributed to generate much inter-
est toward the physics of granular media over the past two
decades �1�. A series of reasons, such as the macroscopic
nature of grains, their inelastic collisions and the lack of true
thermodynamic equilibrium represent an obstacle to a
straightforward application of standard methods of statistical
mechanics. Dilute granular systems, the so-called granular
gases �2�, today are a privileged theoretical and experimental
benchmark to test the fundaments of kinetic theory and of
nonequilibrium statistical mechanics in general �3�.

This paper is inspired to a recent numerical experiment
�4� where a Brownian ratchet, i.e., a mechanical device able
to rectify thermal fluctuations �5�, is obtained in a nonequi-
librium system with energy conserving dynamics. As shown
by Van den Broeck, this rectification can be obtained by
coupling the ratchet to two thermal reservoirs at different
temperatures without violating the second principle of ther-
modynamics. We underline that in order to generate a
Brownian ratchet, two symmetries must be broken: The time
reversal symmetry �detailed balance� and rotational invari-
ance of the object.

We depart from this work by proposing an even simpler
device, the granular ratchet, which contains the minimal in-
gredients necessary to obtain directed motion. It is designed
to achieve a nonequilibrium stationary regime using the in-
elasticity and the consequent lack of detailed balance �6�
together with the broken rotational symmetry to extract work
from a single source.

II. MODEL

The granular ratchet model, sketched in Fig. 1, consists of
a triangular particle �the ratchet� of mass M, shaped as an
isosceles triangle with base l and angle opposite to the base
2�0 and surrounded by a gas of N disks of diameter �=1 and
mass m=1. The ratchet can only slide, without rotating,
along the direction x, perpendicular to its base and the whole
system is enclosed in a squared box of side L with periodic

boundary conditions. The N+1 particles undergo binary in-
stantaneous collisions described by the rule

vi = vi� − �1 + �ij�cij��vi� − v j�� · n̂�n̂ , �1�

where v and v� are the postcollisional and precollisional ve-
locities, respectively. The quantity �ij �1 is the coefficient of
restitution for that particular collision, taking value �d if both
objects are disks or value �r if the ratchet is involved, n̂ is
the outward-pointing unit vector normal, in the contact point,
to the surface of particle i, and cij is a coefficient which
takes, in the different collisions, the values

cij = �1/2 if objects are both disks,

1/�1 + �2n̂x
2� if j is the triangle,

�2/�1 + �2n̂x
2� if i is the triangle,

� �2�

where �2=m /M. Because of the constraint the vertical veloc-
ity of the ratchet is always 0. The collision rule �1� conserves
the total momentum if i and j are disks, and conserves the x

l
2θ

0

FIG. 1. Sketch of the 2D model. The triangle is constrained to
move only in the x̂ �left-right� direction, while its orientation is
fixed, i.e., it cannot rotate. Gas particles collide against it and oc-
casionally receive energy from an external bath, in the form of
uncorrelated isotropic random kicks.
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component of the momentum only, when the triangle is in-
volved. If �ij =1 the total kinetic energy is also conserved.
Three possible cases may be considered: �i� A pure elastic
gas where �d=�r=1, �ii� a mixed gas where �d=1 and
�r�1, and �iii� a pure inelastic gas where �d�1 and
�r�1. In both cases �ii� and �iii� an external driving mecha-
nism is needed to attain a stationary state and avoid indefi-
nite cooling of the system. Here, we use a homogeneous
random driving because it is the simplest and most studied in
theoretical literature �7,8�. In particular, our simulation
implements the nonviscous version of this thermostat: all
disks receive, at a constant frequency, independent random
Gaussian accelerations with zero average and Tb=1 variance.
In experiments one may easily reproduce such a thermostat
by placing the grains upon a horizontal plate vibrating at a
high frequency �9�. The system is simulated by means of an
event driven molecular dynamics algorithm. The triangle is
“smoothed” by approximating its three vertexes with arcs of
circle, with the condition of tangent continuity along the pe-
rimeter.

III. RESULTS AND DISCUSSION

The gas is initialized �at t=0� by assigning to the disks
nonoverlapping random positions and Maxwellian velocities
with zero average and unitary variance. The system forgets
its initial configuration and attains a stationary state. In the
pure elastic case the total energy E= 1

2�imivi
2 �where mi=m if

i is a disk and mi=M if i is the triangle� is strictly conserved,
while in the inelastic case, due to the action of the thermo-
stat, it reaches a stationary value depending on all the control
parameters �frequency of the thermostat, collision frequency,
coefficients of restitution, masses, etc.�. Numerical simula-
tions indicate that the probability distribution function �pdf�
for the velocity of gas particles and of the ratchet are close to
a Maxwellian. In the following we will indicate as Tg the
stationary values of the gas temperature and Tr the ratchet
temperature. The cases �d�1 and �d=1 differ for the sta-
tionary temperature Tg, which is smaller in the inelastic gas
case. Other differences are negligible if the setup is kept
dilute. For this reason we reduce the number of free param-
eters and restrict our simulations to cases �i� and �ii�, that is
keep �d=1 and vary the inelasticity of the triangle �r only.
The molecular dynamics �MD� simulations have been per-
formed using N=1000, L=500 �i.e., covered volume fraction
�4�10−3�, �0=	 /6, l=10, and giving random accelerations
to each gas particles at times separated by an interval 32
,
where 
=	m /Tb / �4���, and �=N /L2.

We focus here on the statistical behavior of the ratchet,
whose position and velocity at time t are denoted as X�t� and
V�t�, respectively. Trajectories are averaged over 1000 real-
izations starting with different random configurations and
discarding the initial transient. Averaged trajectories for two
particular choices of the parameters are displayed in the top
frame of Fig. 2, showing that when the system is totally
elastic no average motion occurs for the triangle. On the
contrary, when inelasticity is switched on, i.e., �r�1, even if
the external driving mechanism acts through random isotro-
pic accelerations and without any privileged direction, the

triangle drifts with average velocity 
V��0. In all our MD
simulations we always observed a negative velocity: The tri-
angle on average moves toward its base. We also studied the
tracer self-diffusion, measuring the quantity

d2�t� = Š„d�t� − 
d�t��…2
‹ , �3�

with d�t�=X�t�−X�0� the displacement of the tracer with re-
spect to a starting time t=0, taken when the whole system
has become stationary. This measure is presented in the bot-
tom frame of Fig. 2, rescaled following the theory discussed
below. The usual Brownian behavior with a ballistic first
stage and diffusive asymptotics is observed.

In Fig. 3 the average velocities and energies of the tri-
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FIG. 2. �Color online� Top frame: Averaged trajectory of the
tracer in MD �full symbols� and DSMC �empty symbols� with M
=10. Bottom frame: Rescaled mean squared displacement d2�t� �see
text� for the same choices of parameters. The power law �x and
�x2 are drawn for reader’s convenience �dotted straight lines�.
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FIG. 3. Rescaled average velocities and energies of the tracer,
both from MD �full symbols� and DSMC �empty symbols� simula-
tions. Averages have been obtained with 103 MD dynamics and 104

DSMC dynamics. Gas particles have always m=1. In MD,
Tg=m
vg

2� /2 changes when changing the parameters �� and M�, in
DSMC it is always Tg=1. The dashed line represents the theorical
predictions obtained from Langevin theory.
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angle, measured in MD �gray symbols�, are shown. The ab-
solute value of the average velocity of the tracer increases as
elasticity is reduced, showing the origin of the effect. As the
partial collapse suggests, the ratchet velocity is proportional
to the thermal velocity of the gas 	2Tg /m and to m /M. The
bottom frame of Fig. 3 illustrates the decrease of the average
ratchet energy, with respect to Tg, with increasing inelastic-
ity. For smaller ratchet masses the effect is stronger. We have
also considered different values of �0 �not shown in figure�:
It appears that reducing this angle is a way to increase the
ratchet effect, i.e., �
V�� increases. This is consistent with the
fact that nonzero motion of the triangle has origin in its
asymmetry. Our next step is obtaining some analytical pre-
dictions to be compared with numerical observations.

In the dilute gas limit, it is reasonable to study the ratchet
dynamics by means of a linearized Boltzmann equation for
its velocity pdf, P�V , t�, which can be written as a master
equation �ME� for a Markov process �4�:

�P�V,t�
�t

= dV��W�V�V��P�V�,t� − W�V��V�P�V,t�� ,

�4�

where the transition rate is

W�V�V�� = 
0

2	

d� SF���
−�

�

dvx�
−�

�

dvy���vx�,vy��

��V� � − v��� · n̂���V� � − v��� · n̂� · ��V

− Vpost�V�,v��,�r,��� , �5�

with Vpost the postcollisional ratchet velocity �see Eq. �1��, �
the Heaviside step function, S the perimeter length, n̂
= �sin � ,−cos �� and for the triangle

SF��� =
l

2 sin �0
�2 sin �0��� − 3	/2� + ��� − �0�

+ ��� − �	 − �0��� . �6�

Following numerical evidence we approximate the velocity
pdf of the gas, �v�, by a Maxwellian with zero mean and
variance Tg. Expression �5� is equivalent to a master equation
�ME� describing a Markov process. It is straightforward to
verify that detailed balance, in the form

P�V�W�V��V� = P�− V��W�− V�− V�� , �7�

holds if �r=1. In a real system, as well as in MD simulation,
inhomogeneities around the ratchet cannot be ruled out. We
have verified that in our setup, which is very dilute, such
inhomogeneities are small and do not prevent the above as-
sumptions to be valid.

As our numerical results suggest the ME describes a
driven-diffusive process. In order to gain a deeper insight it
is convenient to approximate the ME by a Fokker-Planck
equation �FPE�, from which we can extract the analytical
expression of the drift and diffusion terms. This is achieved
by expressing the right-hand side of Eq. �4� by means of the
Kramers-Moyal �KM� expansion

�P�V,t�
�t

= �
n=1

�
�− 1�n

n!
� d

dV
�n

�jn�V�P�V,t�� , �8�

where jn�V�=�dV��V�−V�nW�V� �V�. By retaining only the
first two terms we obtain the sought FPE, which can be still
simplified by expanding these terms in the small parameter �.
The resulting expressions suggest a simple physical picture,
which can be illustrated with the help of the Langevin equa-
tion associated with the FPE:

V̇�t� = − �V�t� +
F

M
+ ��t� , �9�

with noise


��t���t��� =
2�Tr

M
��t − t��, 
��t�� = 0. �10�

The quantities � and F are effective parameters related to the
original parameters by

� = 4��l�	 Tg

2	M
�1 + sin �0� , �11�

F

M
= − �l

Tg

M
�2�1 − sin2 �0���1 − �� , �12�

1 − � = 1 −
Tr

Tg
=

1 − �r

2
. �13�

Hence, for �r�1, the ratchet drifts with an average negative
velocity


V�t�� =
F

M�
= −

1 − �r

8
	2	Tg

M
��1 − sin �0� . �14�

Indeed, the net velocity vanishes linearly with �→0 and
is very tiny for massive ratchets. It is of interest to observe
that in virtue of Eq. �13� the net driving force is proportional
to the temperature difference Tg−Tr, so that the tracer and
the gas temperatures play role analogous the two reservoir
temperatures of the Brownian ratchet model. In principle it is
possible that for a purely inelastic system �case �iii��, for
some choice of inelasticity and masses, the difference
Tg−Tr can change sign, implying a change of sign of the
average ratchet velocity.

From Eqs. �9�–�13� it is also possible to estimate the sig-
nal to noise ratio:

	 
V�t��2


V2�t�� − 
V�t��2 � 	2	
1 − �r

8
��1 − sin �0� . �15�

The measure of 
V� can be blurred by thermal noise in the
limit of large M /m, a fact that can be avoided with a large
number of independent trajectories.

Equations �9� and �10� indicate that a fluctuation-
dissipation relation �FDR� holds, because the noise correla-
tion function appearing in Eq. �10� is proportional to the
effective temperature Tr and to the effective friction �.

This is in contrast with the small violations of FDR re-
ported in studies of different models of granular tracers �10�.
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Indeed, the validity of the FDR in our case is an effect of the
truncation of the KM expansion and of the small � approxi-
mation considered here.

As anticipated in Figs. 2 and 3 the validity of the analyti-
cal theory has been also tested against direct simulation
Monte Carlo �DSMC �11�� which enforces the molecular
chaos assumption, used to derive Eq. �4�, but in principle not
verified in MD. In addition, DSMC allows to fix the desired
form of �v� at our will, while in MD this depends on the
control parameters of the system. Figure 3 displays a good
agreement between theory and DSMC for both observables,
when ��1. Even for �=1 the deviations are not very large.
The comparison with MD results is fair but, as �r is reduced,
systematic corrections appear. When � decreases MD,
DSMC and theoretical predictions show a satisfactory agree-
ment and in particular the results for M
V2� match better than
those for the average velocity. The latter, in fact, originates
from a higher order term in the � expansion, and therefore is
subject to a stronger relative noise.

The tracer velocity self-correlation

C�t� = Š„V�t� − 
V�…„V�0� − 
V�…‹ , �16�

displayed in Fig. 4 together with the theoretical prediction
Tr /M exp�−�t�, gives a direct measure of � and agrees well
with the theory for low inelasticity. For larger inelasticities,
at large time, C�t� shows a slightly fatter tail, a feature ob-
served in previous studies of granular gases �12�. In our
opinion this could explain the lack of perfect agreement with

the estimates of 
V�. Nevertheless, the exponential decay of
C�t� is consistent with the observed diffusive behavior at
large times, as shown in Fig. 2. In particular, from Eq. �9�
one can predict a diffusion coefficient D=Tr / �M�� and a
general formula for the mean squared displacement which
reads: d2�t�� /2D=z− �1−exp�−z�� where z=�t. This predic-
tion is fairly confirmed by MD and DSMC simulation; see
again Fig. 2, bottom frame.

IV. CONCLUSIONS

We are now in a position to draw conclusions and discuss
perspectives. Our main result is the unveiling of an effect
unknown, to the best of our knowledge, in granular gases: a
directed motion driven by undirected fluctuations, exploiting
only the time irreversibility of inelastic collisions. Experi-
mental verification of such a phenomenon may easily be
achieved: only technical problems �such as keeping the
tracer in contact only with the gas and far from the external
driving, in order to reduce noise, e.g., constraining it on a
suspended guide� must be solved. Predictions can be made
for different ratchets: for instance, we can consider a sym-
metrically shaped tracer, such as a piston or a disk, but with
sides �say left-right� made of different materials, which cor-
respond to different inelasticities, �1 and �2, respectively.
The theory predicts �at first order in �� a drift velocity,


V� = 	2	mkT�u − 1��M/m + � − 1�/�4M�u + 1�� , �17�

with u= �1+�1� / �1+�2�. Moreover, other kinds of external
drivings can be used: A typical setup, for example, receives
energy from the boundaries. In this case a box is vibrated and
the tracer should be constrained to be in contact with the gas,
but free to move on a 1d guide.

We conclude pointing out that the main analytical results
presented here have been independently obtained in �13�,
submitted for publication at the same time of our manuscript.
Nevertheless, here we have also reported the agreement of
these predictions with molecular dynamics simulations of a
driven gas of inelastic hard disks, and with the same system
in the molecular chaos approximation �DSMC�, together
with a discussion of the validity of the fluctuation-dissipation
relation, the measurement of diffusion and velocity self-
correlations and the average velocity prediction for a disk
with two sides of different inelasticities.
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